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Abstract
Musical performance involves the production of highly accurate sequences of movements in space 
and time. During a performance, real-time auditory, visual, somatosensory (tactile and kinematic), 
and movement-related information of the outcome of an action provided within the different sensory 
systems is integrated into a coherent percept and fed back to the motor system. These sensory 
feedback mechanisms are, therefore, crucial to maintaining the fluency of production. However, 
how and to what extent do these feedback mechanisms influence music performance and learning? 
A growing area of research has investigated the role of different types of sensory feedback on the 
musicians’ performance. The aim of this integrative review is to overview the recent literature on the 
role of sensory feedback on music performance, focusing particularly on the individual interaction 
between musician and instrument. In the first section, we review recent findings regarding the role 
of auditory, visual, and somatosensory (tactile and kinesthetic) feedback on music performance 
considering each sensory modality separately. To finalize, we briefly discuss the implications of these 
findings to support learning and pedagogical practice.
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Playing a musical instrument is a complex and multifactorial behavior that requires a number 
of  cognitive skills, including motor planning, serial actions, sequencing, and sensorimotor inte-
gration (Palmer, 2013). Performing even a simple musical piece requires precise control of  tim-
ing of  hierarchically organized actions and precise control over sound production (Zatorre, 
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Chen, & Penhune, 2007). Considering that each action in a music performance produces cor-
related perceptual outcomes (auditory, visual, somatosensory) that will influence each subse-
quent movement, it is of  fundamental importance to understand the role of  sensory feedback 
mechanisms in maintaining the fluency of  production in music performance.

A common approach to studying how and to what extent sensory feedback influences move-
ment execution and planning is by experimentally manipulating the perceptual feedback of  an 
action (Kulpa & Pfordresher, 2013; Pfordresher & Dalla Bella, 2011; Pfordresher & Palmer, 
2006). A growing area of  research has investigated the role of  different types of  sensory feed-
back on the performance of  musicians; however, this literature is scattered across time. This 
article aims to review the recent literature on the role of  sensory feedback on music perfor-
mance, focusing particularly on behavioral research regarding the individual interaction 
between musician and instrument. In the first section, we review recent findings regarding the 
role of  auditory, visual, and somatosensory (tactile and kinesthetic) feedback on music perfor-
mance, considering each sensory modality separately. To finalize, we briefly discuss the implica-
tions of  these findings to support learning in a music education context.

Sensory feedback mechanisms involved in music performance

Musical performance involves the production of  highly accurate sequences of  movements in 
space and time. When playing the piano, for instance, temporal and spatial precision of  finger 
and hand movements on the keyboard are crucial to achieving an accurate and satisfying per-
formance (Dalla Bella & Palmer, 2011; Furuya & Soechting, 2010). During a performance, 
real-time auditory, visual, somatosensory (tactile and kinematic), and movement-related infor-
mation of  the outcome of  an action provided within different sensory systems is integrated into 
a coherent percept and fed back to the motor system to rapidly adjust subsequent motor actions 
(Kawato, 1999; Seidler, Noll, & Thiers, 2004). These feedback mechanisms are, therefore, cru-
cial to maintaining the fluency of  production. However, how and to what extent do these feed-
back mechanisms influence musical learning and performance? In this section, we provide an 
overview of  recent research findings on the different roles of  sensory feedback on music 
performance.

Auditory feedback

Performance-based music-making relies heavily on close auditory–motor interactions as most 
musical instruments involve the execution of  a sequence of  movements to produce an intended 
sequence of  sounds. The perceived auditory consequences of  one’s actions are referred to as 
auditory feedback.

It is well established that auditory feedback facilitates learning of  a novel task (Brown & 
Palmer, 2013; Engel et al., 2012; Lappe, Lappe, & Keller, 2018; Pau, Jahn, Sakreida, Domin, & 
Lotze, 2013; Pfordresher, 2012). This effect has been demonstrated in studies where nonmusi-
cians learned to play musical sequences on the piano under different auditory feedback condi-
tions (e.g., normal, fixed-pitch, and random auditory feedback) (Lappe et al., 2018; Pfordresher 
& Chow, 2019; Pfordresher, Keller, Koch, Palmer, & Yildirim, 2011; Stewart, Verdonschot, 
Nasralla, & Lanipekun, 2013). For instance, Lappe et al. (2018) showed that musical novices 
produced more sequencing errors (i.e., higher percentage of  incorrect keystrokes) on a newly 
learned musical sequence when auditory feedback was random and unpredictable than in the 
condition where the auditory consequences of  the finger movement were predictable and could 
be deducted from conventional piano key-to-tone mapping. These findings suggest that 
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auditory feedback has a relevant role in movement sequencing learning and corroborate the 
notion that auditory feedback is important for auditory–motor consolidation and integration 
(Drost, Rieger, Brass, Gunter, & Prinz, 2005; Lahav, Saltzman, & Schlaug, 2007; Pfordresher 
et  al., 2011; Stewart et  al., 2013). Pfordresher and Chow (2019) examined the strength of  
coupling between actions and their auditory effects in a study where professional pianists and 
non-pianists learned to play short melodies by ear under different auditory feedback condi-
tions: normal pitch mapping (left keys/low notes and right keys/high notes) and inverted/
reversed pitch mapping. It was demonstrated that pianists who learned melodies with an 
inverted pitch mapping produced more errors than pianists who learned the melodies with nor-
mal auditory feedback, whereas the error rate for non-pianists did not differ between condi-
tions. This suggests that musicians have strongly consolidated associations between actions 
and their expected sensory (auditory) outcomes, and that the strength of  this action–percep-
tion coupling in musicians may constrain sensorimotor learning in face of  new spatial configu-
rations for pitch representation. Evidence indeed suggests that action–perception associations 
emerge rapidly with practice. In Bangert and Altenmüller (2003), musical novices learned 
short piano melodies either with a conventional key-to-pitch mapping or with random pitch-to-
key maps. Electroencephalography data were recorded immediately before and after the first 
training session and again after 5 weeks of  training. The results demonstrated that while a dis-
tinct right anterior activation was observed in the group that learned the melodies with normal 
auditory feedback, this activity was absent when pitches were randomly assigned to each piano 
key preventing associations. These findings indicate that auditory–sensorimotor coactivation 
associated with the establishment of  a key-to-pitch map emerges after a few minutes of  practice 
and is firmly established after a few weeks of  training (see also Baumann et al., 2007; Chen, 
Rae, & Watkins, 2012).

Auditory–motor associations acquired through learning may also facilitate auditory mem-
ory (Brown & Palmer, 2012; Brown & Penhune, 2018; Engel et al., 2012; Finney & Palmer, 
2003; Palmer, 2005; Pau et al., 2013). Brown and Palmer (2012) showed that pianists’ recog-
nition of  newly learned musical sequences was generally better when auditory feedback was 
provided during practice (auditory-only and auditory–motor conditions) in relation to learning 
the melodies by performing with no sound (see also Brown & Penhune, 2018). In addition, the 
study indicated that auditory memory was better for melodies that were performed with nor-
mal feedback than following auditory-only learning. Schiavio and Timmers (2016) expanded 
these findings by examining the role of  motor and audiovisual learning in auditory memory in 
participants with different levels of  piano experience. Participants (nonmusicians, pianists, and 
other musicians) learned tonally ambiguous piano melodies by playing the melodies with audi-
tory feedback, by silent playing, by watching a video of  someone playing the melodies, or by 
only listening to the melodies. The results indicated that the proportion of  correctly recalled 
melodies was higher in the learning conditions where there was active motor engagement 
(playing with and without feedback) than in the auditory-only condition for all participants, 
instigating further research on the role of  active sensorimotor experience in learning and audi-
tory memory.

There is also substantial evidence that auditory feedback is important to regulate the timing 
of  movement sequencing in sensorimotor synchronization (for extensive discussion, see 
Aschersleben & Prinz, 1995; Pfordresher, 2003; Pfordresher & Dalla Bella, 2011; Pfordresher 
& Kulpa, 2011; Repp, 2005; Repp & Su, 2013). Findings consistently show that maintaining 
the metronome tempo in a synchronization-continuation finger-tapping task is significantly 
more variable when no auditory feedback is provided than when self-feedback is available 
(Konvalinka, Vuust, Roepstorff, & Frith, 2010; Mates, Radil, & Pöppel, 1992; Nowicki, Prinz, 
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Grosjean, Repp, & Keller, 2013; Schultz & Palmer, 2019). This suggests that internal mecha-
nisms that support movement adaptation and anticipation use real-time sensory feedback—
such as auditory input—to control and make behavioral adjustments via timekeeping 
mechanisms to allow temporal coordination and action synchrony with regular external stim-
uli and between co-performers (Van der Steen & Keller, 2013). Indeed, joint actions require the 
ability to monitor the timing of  one’s own and others’ actions to modify subsequent motor 
plans when asynchronies occur, which is done particularly successfully when auditory infor-
mation from all parts is available (for review, see Keller, Novembre, & Hove, 2014; Sebanz & 
Knoblich, 2009). Goebl and Palmer (2009) investigated how auditory feedback influences per-
formance synchronization in a piano duet. Pianists performed a set of  melodies while receiving 
only self-feedback, full auditory feedback from both parts, or while one musician received full 
feedback and the other received only self-feedback. It was demonstrated that temporal asyn-
chronies increased as auditory feedback decreased. More specifically, pianists were more syn-
chronized and showed greater adaptation in conditions in which performers received auditory 
feedback from the co-performer. These findings have been corroborated and expanded by stud-
ies investigating ensemble synchrony in duets (Bishop & Goebl, 2015; Loehr, Kourtis, & Brazil, 
2015; Zamm, Pfordresher, & Palmer, 2014) and string quartet performance (Timmers, Endo, 
Bradbury, & Wing, 2014; Wing, Endo, Bradbury, & Vorberg, 2014).

While auditory information is particularly relevant for ensemble cohesion in music perfor-
mance, solo piano performance appears to be relatively unimpaired by the removal of  auditory 
feedback (Bishop, Bailes, & Dean, 2013; Finney & Palmer, 2003; Highben & Palmer, 2004; 
Repp, 1999). Altering auditory feedback by providing information that corresponds to a trans-
posed version of  a melodic sequence or presenting random and unpredictable pitch feedback 
has negligible effects on the performance of  well-rehearsed and memorized musical sequences 
(Finney, 1997; Pfordresher, 2005, 2008). This effect is probably due to anticipatory imagery 
that compensates for the missing or irrelevant feedback information. Online musical imagery is 
the ability to experience the outcome of  an action in advance of  their performance or percep-
tion, and anticipatory imagery seems to enable action planning and expressive music perfor-
mance whether auditory feedback is available or not (Bishop et al., 2013; Keller, Dalla Bella, & 
Koch, 2010). However, existing evidence suggests that performance may be affected both by 
the timing of  feedback onset in relation to the action and by the content of  the auditory feed-
back (Pfordresher, 2012).

A large body of  research has investigated the effect of  auditory feedback disruption on the 
production of  sequential movements (Furuya & Soechting, 2010; Hove, Balasubramaniam, & 
Keller, 2014; Lappe, Steinsträter, & Pantev, 2013; Pfordresher & Benitez, 2007; Pfordresher & 
Dalla Bella, 2011; Pfordresher & Kulpa, 2011; Pfordresher & Palmer, 2006; Repp, 2001, 2008; 
Repp & Keller, 2008; Van der Steen, Molendijk, Altenmüller, & Furuya, 2014). It has been sys-
tematically demonstrated that auditory feedback disruptions caused by delayed auditory feed-
back (i.e., where a constant lag is inserted between action and auditory feedback onset) 
significantly affect the fluency of  production primarily by slowing production rate and increas-
ing timing variability (Pfordresher & Benitez, 2007; Pfordresher & Dalla Bella, 2011; Pfordresher 
et al., 2011; Pfordresher & Palmer, 2002; Repp, 2000, 2001; Repp & Su, 2013). On the con-
trary, the findings relating to the effect of  disruptions of  the content of  auditory feedback (e.g., 
pitch, loudness) have been less consistent due partly to the implementation of  distinct research 
paradigms. For instance, earlier results suggested that altering pitch feedback would cause little 
interference on performance (Finney, 1997). However, this conclusion has been challenged in 
a series of  studies by Pfordresher and colleagues based on the serial shift paradigm (Pfordresher, 
2003, 2008; Pfordresher & Benitez, 2007; Pfordresher & Kulpa, 2011; Pfordresher, Mantell, 
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Brown, Zivadinov, & Cox, 2014; Pfordresher & Palmer, 2006). In this paradigm, pianists per-
form melodies from memory while the feedback triggered by each keystroke matches a tone 
intended for a different sequence position (Pfordresher & Palmer, 2006). Overall, these studies 
show that alterations of  feedback content through serial shift significantly disrupt performance 
by increasing error rates (i.e., striking the wrong key) but have little effect on timing variability. 
However, recent studies have adapted the serial shift paradigm to include only occasional audi-
tory feedback shifts (Mathias, Gehring, & Palmer, 2017, 2019) and revealed that transient 
pitch perturbations can indeed disrupt timing variability, causing pianists to slow down imme-
diately following an unexpected pitch feedback (Mathias et al., 2017, 2019; see also Furuya & 
Soechting, 2010). These recently emerging results suggest that performers actively monitor the 
timing and the content of  the perceptual outcomes of  their actions and that disruptions of  the 
auditory feedback content may also impact action planning of  subsequent movements, open-
ing new lines of  enquiry.

Sensorimotor discrepancies between action and its auditory outcome may also be important 
to determine agency, which refers to being the agent of  an action or feeling in control of  one’s 
actions and their effects (reviewed in Sevdalis & Keller, 2014). In Couchman, Beasley, and 
Pfordresher (2012), participants performed short melodies from memory on an electronic key-
board while experiencing altered auditory feedback in relation to its content (i.e., pitch) or syn-
chrony. Results indicated that feedback alterations significantly decreased the experience of  
agency, suggesting that sensorimotor discrepancies can be used to determine authorship (see 
also Repp & Knoblich, 2004; Van Vugt, Jabusch, & Altenmüller, 2013).

The neural mechanisms underlying disruptive effects of  altered auditory feedback on music 
performance remain largely unexplored. Evidence from electroencephalography research sug-
gests that unexpected changes in auditory feedback tones generated during music performance 
elicit a negative event-related potential (ERP) component peaking around 100–200 ms follow-
ing auditory onsets (Katahira, Abla, Masuda, & Okanoya, 2008; Loehr, Kourtis, Vesper, Sebanz, 
& Knoblich, 2013; Maidhof, Vavatzanidis, Prinz, Rieger, & Koelsch, 2010; Mathias et al., 2017; 
Ruiz, Jabusch, & Altenmüller, 2009; Ruiz, Strübing, Jabusch, & Altenmüller, 2011). It has been 
shown, for instance, that the amplitude of  ERPs elicited after an unexpected feedback is larger 
during music performance than during merely listening to the sequence (Maidhof, 2013), sug-
gesting that motor training of  a specific melody enhances sensory predictions. Interestingly, 
studies have shown that auditory feedback may not be a prerequisite for error monitoring since 
brain responses can be observed even before the execution of  an error (Maidhof, 2013; Ruiz 
et  al., 2009; Shadmehr, Smith, & Krakauer, 2010). Neuroimaging research further demon-
strated that alterations of  pitch feedback during piano performance modulate the activity 
within motor regions of  the brain (e.g., cerebellum and the supplementary motor area) as well 
as the anterior cingulate cortex (a brain region implicated in action monitoring) (Pfordresher 
et al., 2014). These findings collectively indicate that musical training leads to a strong audi-
tory–motor coupling that can be observed at brain level (for review, see Novembre & Keller, 
2014).

Visual feedback

Considerably fewer studies have investigated the effect of  self-generated visual feedback on 
music performance. To test the role of  visual information on learning and consolidation of  key-
to-tone mapping, Eldridge, Saltzman, and Lahav (2010) trained nonmusicians to play a piano 
sequence by ear with one group of  participants receiving full audiovisual feedback during 
training while visual feedback was deprived for the second group (i.e., visual feedback of  the 
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hands was not available). The authors observed that participants who did not receive visual 
feedback during learning showed poorer ability to recognize and match the pitches to the cor-
responding piano keys than those who received audiovisual feedback, suggesting that visual 
feedback facilitated key-to-tone retention and consolidation for music beginners. Engel and col-
leagues (2012) also trained nonmusicians to play short musical sequences on a piano keyboard 
with different sensory information. One group of  participants first listened to the melodies and 
then reproduced them on the keyboard while receiving only auditory and motor information 
(visual feedback of  their fingers was occluded), whereas the second group observed a silent 
demonstration and then reproduced the melodies on a muted keyboard, thus not receiving any 
auditory information. This study found that participants in the visuomotor training condition 
learned the melodies faster than those in the audio-motor training condition. However, when 
asked to later recognize the learned melodies, participants in the audio-motor training were 
more accurate at identifying the finger movements corresponding to the melodies they learned 
than those in the visuomotor conditions were at recognizing the sound of  the learned sequences. 
The authors concluded that cross-modal transfer is stronger when there is audio-motor inte-
gration during music learning (see also Hasegawa et al., 2004).

While these findings suggest that visual feedback deprivation affects learning and consolida-
tion for music beginners, evidence suggests that visual information may be less relevant for 
expressive music performance for highly trained musicians. In Wöllner and Williamon (2007), 
experienced pianists performed from memory while auditory, visual, and kinesthetic feedback 
was systematically removed. The results indicated that the removal of  visual feedback (i.e., 
musicians playing with their eyes closed) did not significantly affect the stability of  the timing 
during the performance. The authors concluded that, as seen with auditory feedback removal, 
the lack of  significant disruptions caused by the deprivation of  visual feedback is probably asso-
ciated with auditory imagery, which enables skilled performers to plan an action and anticipate 
its outcome even before a movement is executed or perceived (Bishop et al., 2013; Keller et al., 
2010).

Kulpa and Pfordresher (2013) evaluated the effect of  altered visual feedback on the produc-
tion of  a musical sequence. Participants learned to play an isochronous melody on a keyboard 
and then attempted to perform this sequence while auditory and visual feedback was manipu-
lated (normal, absent, or delayed). For that, visual feedback during the performance was repre-
sented as a motion capture animation of  the performer’s hand. The study results indicated that 
delayed visual feedback significantly affected production rate and timing variability, suggesting 
that conflicting information across feedback channels and sensorimotor interference caused by 
the delayed visual information disrupted music performance. However, more research is war-
ranted to further understand the impact of  visual feedback disruptions on the fluency and tim-
ing of  action sequences.

Visual feedback also seems to be important for sight-reading (Wristen, 2005). In Banton 
(1995), pianists performed a sight-reading task in conditions that included normal feedback, 
no auditory feedback, and no visual feedback of  the hands. The results indicated that while the 
absence of  auditory feedback did not significantly affect error rates, the removal of  visual feed-
back of  the hands caused a significant increase in errors. Importantly, the degree to which 
performance was affected by the absence of  visual feedback was associated with the pianist’s 
familiarity with the positioning of  the hands and fingers on the keyboard. Therefore, visual 
feedback seems to play a role in skilled sight-reading execution as it relates to the tactile com-
mand of  keyboard geography, but it is unclear whether it would also be pertinent for other 
instruments.
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A growing body of  literature has also shown that visual cues are important to guide inter-
personal synchronization between musicians during ensemble performances (Bishop & Goebl, 
2015, 2018; D’Amario, Daffern, & Bailes, 2018; Goebl & Palmer, 2009; Palmer, Spidle, 
Koopmans, & Schubert, 2019). Studies reported, for instance, that precision and consistency of  
synchronization between performers are affected when visual cues of  the partner are removed 
(D’Amario et al., 2018; Kawase, 2014). It has also been shown that visual contact is particu-
larly relevant for temporal synchronization in duo performances when auditory feedback is 
limited or when musical timing is irregular (Bishop & Goebl, 2015; Goebl & Palmer, 2009). 
These findings thus suggest that feedback from one’s self  and feedback from a partner are both 
relevant for the control of  timing during music performance.

Somatosensory feedback

The contribution of  somatosensory information for movement control in music performance 
has been a topic of  investigation in a large body of  research (Palmer, 2013). Tactile feedback, 
referring to the experience of  touch, and kinesthetic feedback (i.e., awareness of  body posture 
and limb position through proprioception) are the primary focus of  the studies reviewed in this 
section.

The role of  tactile feedback in the timing of  sequential movements is well-known 
(Aschersleben & Prinz, 1995; Gordon & Soechting, 1995). Aschersleben, Gehrke, and Prinz 
(2001) found that local anesthesia to the participant’s fingertips led to a significant increase in 
negative asynchrony as tapping movements preceded the pacing signals due to the suppression 
of  tactile feedback. The study also reported that other behavioral tasks that did not involve tac-
tile feedback (e.g., finger wiggling) were not affected by the local finger anesthesia, thus sup-
porting the notion that tactile information plays an important role in the control of  timing in 
synchronization tapping. These results were later corroborated in a study involving cases of  
patients with peripheral somatosensory loss, which causes complete loss of  cutaneous touch 
and kinesthetic sense. In Stenneken, Prinz, Cole, Paillard, and Aschersleben (2006), healthy 
participants and deafferented patients performed finger-tapping tasks either with or without 
visual and auditory feedback. While deafferented patients tended to anticipate the movement 
tapping far ahead of  the pacing stimulus (−95 ms) when visual and auditory feedback was not 
provided, healthy individuals showed asynchrony between their taps and the pacing signal 
around −30 ms, indicating that they relied on proprioceptive and tactile information to control 
movement timing when no other feedback was available.

There is consistent evidence that tactile and kinesthetic information at finger–key contact is 
particularly relevant for timing accuracy of  finger movements in music performance (Dalla 
Bella & Palmer, 2011; Furuya, Goda, Katayose, Miwa, & Nagata, 2011; Goebl & Palmer, 2008, 
2013; Palmer, Koopmans, Loehr, & Carter, 2009). For instance, Goebl and Palmer (2008) 
found that pianists who presented maximum finger accelerations at finger–key contact showed 
an increased temporal accuracy for the temporal interval following the keystroke. Indeed, peak 
acceleration is directly associated with the amount of  force applied, revealing the amount of  
tactile information available at the fingertip (Palmer et al., 2009). Therefore, this finding sug-
gests that the availability of  tactile feedback at key contact facilitates the planning and execu-
tion of  upcoming events, hence increasing timing accuracy in performance. Palmer et  al. 
(2009) extended these results in a study with a wind instrument. Skillful clarinetists performed 
melodies at different rates in a synchronization task while their movements were recorded with 
a motion capture system. The study found that performances containing more kinematic land-
marks reduced timing error and that the magnitude of  finger accelerations when making 
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initial contact with or releasing from the key surface was positively correlated with increased 
temporal accuracy during subsequent keystrokes. These results corroborate the notion that 
movement precision is associated in part with the amount of  sensory (tactile) information 
available during the contact of  the finger with the instrument.

There are also suggestions that proprioceptive feedback may be particularly relevant when 
performing at faster tempi (Dalla Bella & Palmer, 2011; Furuya et al., 2011; Goebl & Palmer, 
2013; Loehr & Palmer, 2009; Palmer et  al., 2009; Van Vugt, Furuya, Vauth, Jabusch, & 
Altenmüller, 2014). Dalla Bella and Palmer (2011) investigated the effect of  performance rate 
on finger motion. Pianists performed melodies from memory at different rates while finger kin-
ematics were recorded with a motion capture system to examine, for example, movement in the 
vertical dimension (height) perpendicular to the horizontal plane of  the piano keyboard. It was 
reported that finger movement amplitude increased at faster performances, yielding greater 
finger heights above the keys. The authors suggested that a larger amplitude of  motion at faster 
tempi may be a strategy used by performers to increase tactile and kinesthetic feedback at key-
press to counter a speed-accuracy tradeoff  and enhance temporal accuracy, allowing pianists 
to maintain high temporal accuracy when playing at faster tempi.

Studies have also shown that pianists use purposefully different types of  touch (i.e., struck or 
pressed) during the performance to produce differences in dynamics and timbre (for review, see 
Goebl, 2017; MacRitchie, 2015). In the piano, for example, dynamics and timbre of  isolated 
tones are controlled by the speed with which the finger interacts with the key surface, and con-
sequently the velocity with which the hammer hits the strings (Goebl, Bresin, & Fujinaga, 
2014; Goebl & Palmer, 2008). Different finger–key interactions induce distinct tactile feedback 
that is used by the musician to control the timing and sound quality during the performance 
(Goebl, Bresin, & Galembo, 2005; Goebl & Palmer, 2008; Hofmann & Goebl, 2016). In the 
Wöllner and Williamon (2007) study reported earlier, it was found that consistency in both 
expressive timing and intensity (dynamic) microstructure during the performance was highest 
in the conditions where kinesthetic feedback was provided and that the manipulation of  this 
feedback input resulted in increased timing variability compared to the performance with nor-
mal feedback. However, it is important to note that the vast majority of  research regarding the 
relevance of  tactile feedback on music performance has been conducted with keyboard instru-
ments; thus, further research is needed to examine the impact of  tactile feedback on other 
instruments.

The effect of  music training on tactile feedback processing has also been investigated to some 
extent (Kuchenbuch, Paraskevopoulos, Herholz, & Pantev, 2014; Ragert, Schmidt, Altenmüller, 
& Dinse, 2004). Kuchenbuch and colleagues (2014) presented short patterns of  auditory and 
tactile stimuli with a tone-to-key relationship. Participants with various levels of  music train-
ing heard sequences of  five tones while receiving tactile stimulation to a finger corresponding 
to a specific note, mimicking the tactile and auditory interaction during music playing. 
Participants’ task was to identify whether the stimulation pattern was congruent or incongru-
ent, where congruent trials consisted of  matches of  audio-tactile stimulation on all five tones. 
The behavioral results suggested that musicians were better than nonmusicians at identifying 
incongruencies between audio and tactile mismatches. Imaging data acquired during the task 
revealed a clear influence of  musical training on networks involved in audio-tactile integration 
with musicians showing increased activation in the premotor cortex and cerebellum than non-
musicians, corroborating the notion that multisensory stimuli are modulated by expertise 
(Gebel, Braun, Kaza, Altenmüller, & Lotze, 2013; Lotze, Scheler, Tan, Braun, & Birbaumer, 
2003). Interestingly, areas associated with sensorimotor processing have been shown to be 
active in musically trained participants even during kinesthetic imagery and can be modulated 
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by the specific instrument of  practice (Bangert et al., 2006; Bengtsson et al., 2005; Candidi, 
Sacheli, Mega, & Aglioti, 2014; Gebel et al., 2013; Lotze, 2013; Zatorre & Halpern, 2005).

Highben and Palmer (2004) tested the effects of  two types of  mental practice in learning to 
perform an unfamiliar piece. In the auditory-only practice condition, pianists read the music 
score while only listening to a computer-generated version of  the music, whereas in the motor-
only training musicians received somatosensory feedback from the piano keys but had no audi-
tory feedback. In the “covert” practice condition, no auditory or movement-related feedback 
was available. Participants were asked to imagine the missing feedback information during 
practice. The results indicated that there was no significant difference between auditory or 
motor practice conditions in the number of  notes recalled correctly when participants were 
asked to play the melodies from memory. However, participants who scored high on a post-test 
of  aural skills were least disturbed in learning the piece without auditory feedback, suggesting 
that their auditory imagery skills facilitated learning.

Implications for music education

The current state of  knowledge summarized here provides evidence of  the important role of  
sensory feedback on learning with relevant practical applications for contemporary music 
teaching and learning. In this section, we briefly highlight three main learning aspects that are 
facilitated by sensory feedback mechanisms and discuss some implications of  the key research 
findings for music education practice.

Considering that music performance relies heavily on close action–perception interactions 
as each action in a music performance produces correlated perceptual outcomes (auditory, 
visual, somatosensory), a crucial aspect of  learning is providing reliable sensory information 
that allows the system to form unbiased predictions and maintain accuracy and flexibility 
(Shadmehr et al., 2010). There is a growing body of  research indicating that auditory (Bangert 
& Altenmüller, 2003; Drost et  al., 2005; Lahav et  al., 2007; Pfordresher & Chow, 2019; 
Pfordresher et al., 2011; Stewart et al., 2013), visual (Eldridge et al., 2010; Engel et al., 2012), 
and somatosensory feedback (Kuchenbuch et al., 2014) are important to integrate and consoli-
date a strong relationship between movements and their correlated perceptual outcomes, thus 
facilitating the development of  sensorimotor representations necessary to build internal mod-
els (Altenmüller & McPherson, 2007). Therefore, music educators have an important role in 
ensuring that students understand the difference between effective and unproductive practices 
to prevent the consolidation of  ineffective performance habits, particularly at the initial stages 
of  skill acquisition. Action–perception associations emerge rapidly after minutes of  training, 
and consistent practice strengthens the integration between movement and their predicted 
sensory outcomes (Bangert & Altenmüller, 2003; Baumann et al., 2007; Chen et al., 2012). 
Moreover, it has been shown that strong action–perception couplings may affect sensorimotor 
learning in face of  new configurations (Pfordresher & Chow, 2019), corroborating the notion 
that providing reliable sensory information has an impact on future learning practices. Another 
aspect that one must consider regarding the development of  close action–perception associa-
tions during learning is that the consolidation of  the networks necessary for movement pro-
gramming is rest- or sleep-dependent (Robertson, Pascual-Leone, & Miall, 2004). Thus, breaks 
between study sessions and an adequate amount of  sleep are very important to reach a level of  
mastery in any musical repertoire (Altenmüller & Furuya, 2016). Indeed, research suggests 
that sleep seems to enhance musical performance by reducing the impact of  proactive and ret-
roactive interference of  old information generated in past performances and preventing the loss 
of  newly acquired information (Nusbaum, Uddin, Van Hedger, & Heald, 2018). Van Hedger, 
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Hogstrom, Palmer, and Nusbaum (2015) found that there is a functional dissociation between 
the mechanisms of  consolidation for motor and conceptual learning as only conceptual errors 
(e.g., melodic interval, contour, chords) were significantly reduced after sleep. This study also 
demonstrated that both motor and conceptual errors increased over a 12-hr waking retention 
interval, again demonstrating the important role of  rest or sleep for learning consolidation (see 
also Altenmüller & Furuya, 2016).

The literature reviewed here also indicates that sensory feedback facilitates learning of  novel 
tasks. Specifically, research suggests that auditory feedback (Brown & Palmer, 2013; Engel 
et al., 2012; Lappe et al., 2018; Pau et al., 2013; Pfordresher, 2012) and visual information 
(Eldridge et al., 2010; Engel et al., 2012) significantly improve key-to-tone retention and con-
solidation for music beginners. The direct application of  these findings in music education prac-
tice relates to the development and use of  learning strategies to enhance sensory feedback 
awareness (Diedrichsen, White, Newman, & Lally, 2010; Taylor & Ivry, 2011). One technique 
that has been greatly applied in music teaching and learning makes the use of  audio and video 
recordings of  the student’s performance to highlight aspects relating to sound quality and 
movement patterns during performance (Castellano, Bresin, Camurri, & Volpe, 2007; Riley, 
Coons, & Marcarian, 2005). More recently, researchers have examined the effectiveness of  
newly available technology to provide additional or extrinsic feedback with the end goal of  
enhancing performance (Anderson, Grossman, Matejka, & Fitzmaurice, 2013; Blanco & 
Ramirez, 2019; Brandmeyer, Timmers, Sadakata, & Desain, 2011; Furuya, Nakamura, & 
Nagata, 2014; Paney & Tharp, 2019; Pardue & McPherson, 2019; Sadakata, Hoppe, 
Brandmeyer, Timmers, & Desain, 2008; Timmers, Sadakata, & Desain, 2012). In general, find-
ings suggest that providing real-time external feedback (visual or auditory) regarding timing 
accuracy (Timmers et  al., 2012), finger movement (Furuya et  al., 2014), singing accuracy 
(Paney & Tharp, 2019), pitch intonation in violin (Pardue & McPherson, 2019), and expressiv-
ity (Brandmeyer et al., 2011; Sadakata et al., 2008) can significantly benefit both music begin-
ners and skilled performers (Anderson et al., 2013). This emerging area of  applied research in 
music education and learning has a large potential, warranting further investigation of  the 
promising application of  additional/extrinsic sensory feedback in music practices.

Finally, evidence suggests that sensory information provided during learning can have sig-
nificant impact on memory. The research reviewed here indicates that auditory information 
and active motor engagement facilitate memory (Brown & Palmer, 2012; Brown & Penhune, 
2018; Engel et al., 2012; Finney & Palmer, 2003; Palmer, 2005; Pau et al., 2013; Schiavio & 
Timmers, 2016), while the independent role of  visual and tactile feedback on memory remains 
unclear. Nonetheless, there is research showing that learning strategies that include multiple 
coding forms (visual, auditory, tactile, and kinesthetic) facilitate later retrieval (Petrini et al., 
2009; Wan & Schlaug, 2010), promote the development of  mental imagery (Highben & Palmer, 
2004; Lotze, 2013; Zatorre & Halpern, 2005), and enhance the overall learning experience 
(Riley et  al., 2005). These findings thus indicate that, although the research reviewed here 
focuses on the individual role of  auditory, visual, and somatosensory feedback mechanisms on 
learning and performance, it is important to consider the role of  sensory feedback integration 
on music teaching and practice (Zimmerman & Lahav, 2012).

Conclusion

This review examined a growing body of  research to better understand how and to what extent 
sensory feedback mechanisms influence musical learning and performance, addressing par-
ticularly the interaction between musicians and their instrument. The current state of  
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knowledge overviewed here provides consistent evidence that auditory (Konvalinka et  al., 
2010; Mates et al., 1992; Nowicki et al., 2013; Schultz & Palmer, 2019) and somatosensory 
feedback mechanisms (Aschersleben et al., 2001; Dalla Bella & Palmer, 2011; Furuya et al., 
2011; Goebl & Palmer, 2008; Palmer et al., 2009) play a crucial role in the control of  timing 
and movement sequencing in sensorimotor synchronization. Ensemble cohesion and interper-
sonal coordination during music performance greatly rely on the availability of  auditory (Goebl 
& Palmer, 2009; Konvalinka et al., 2010; Mates et al., 1992; Nowicki et al., 2013; Schultz & 
Palmer, 2019) and visual information between co-performers (Bishop & Goebl, 2015, 2018; 
D’Amario et al., 2018; Goebl & Palmer, 2009; Palmer et al., 2019). Finally, studies also show 
that although the absence of  auditory feedback (Bishop et al., 2013; Finney & Palmer, 2003; 
Highben & Palmer, 2004; Repp, 1999) or visual input (Wöllner & Williamon, 2007) has negli-
gible effects on the performance of  well-known and memorized musical pieces, delayed feed-
back and content perturbation of  the auditory feedback can significantly disrupt the fluency of  
production by affecting movement timing and accuracy, respectively (Pfordresher & Dalla Bella, 
2011; Pfordresher & Kulpa, 2011; Pfordresher & Palmer, 2006). Regarding learning, the cur-
rent literature suggests that sensory feedback is crucial for the consolidation and integration of  
action–perception couplings (Bangert & Altenmüller, 2003; Drost et al., 2005; Eldridge et al., 
2010; Engel et al., 2012; Kuchenbuch et al., 2014; Lahav et al., 2007; Pfordresher & Chow, 
2019; Pfordresher et al., 2011), learning a novel task (Brown & Palmer, 2013; Eldridge et al., 
2010; Engel et al., 2012; Lappe et al., 2018; Pau et al., 2013; Pfordresher, 2012), and can also 
impact memory and mental imagery (Brown & Palmer, 2012; Brown & Penhune, 2018; Engel 
et al., 2012; Palmer, 2005; Pau et al., 2013; Schiavio & Timmers, 2016; Zatorre & Halpern, 
2005).

Despite the many advances on this topic, some issues regarding the role of  sensory feedback 
mechanisms on music performance and learning remain elusive. It is of  note that the vast 
majority of  the literature on sensory feedback mechanisms in music is based on studies with 
keyboard instruments, raising the question of  whether much of  what we know on this topic 
applies to other instruments or singing. It is also evident that studies have focused significantly 
on understanding the role of  auditory feedback mechanisms; thus, more research is needed to 
better understand the impact of  other sensory mechanisms on performance and learning. 
Further research on the effects of  working memory and musical imagery in the context of  
altered sensory feedback, possible individual differences and instrument expertise, and the 
implications of  augmented feedback to enhance learning and performance are topics for future 
research on the effect of  sensory feedback in music performer–instrument interactions.

Overall, this growing body of  research provides extensive evidence of  the role of  feedback 
mechanisms, sensorimotor integration, and action–perception coupling for learning and pro-
duction fluency in music performance, with important implications for education as it impacts 
the development of  evidence-based learning strategies and opens the possibility of  using tech-
nology-based techniques to improve learning and performance.
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